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Parallel and orthogonal stimulus in ultradiluted neural networks
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Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an
extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the
effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the
average network superposition. The stimulus field was considered as proportional to the overlapping of the
state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external
stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern
orthogonal to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase
diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our
results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two
recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our

analytical results with numerical simulations for the noiseless case 7=0.
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I. INTRODUCTION

In the last years, many specific biological characteristics
of living neurons have been incorporated to the theoretical
neural network models, in particular to the Hopfield model
of pattern recognition [1]. The main interest is devoted to
describe more realistically the properties of natural neural
networks, although many extensions of the traditional mod-
elling have indeed led to the emergence of new phenomena
[2-4]. In particular, several works have been developed aim-
ing an increase in the recognition ability of learning patterns
or even an enhancement of the associated basin of attraction
which may result in more robust networks [5,6]. In this di-
rection, an important biological element to be introduced in
neural network models is related to external stimulus. Bio-
logically, whenever a stimulus reaches our mind, even
through an image, a sound or a sensation, a set of neurons is
activated which stimulates or inhibits each other in order to
achieve a given conscious state, i.e., a network pattern. Once
the stimulus is turned off, the neurons that participated in this
process may or may not return to their original state. If the
stimulus is persistent, the set of activated neurons naturally
strengthens their interactions, thus increasing the response
efficiency to this stimulus.

Several proposals have been presented in the literature
taking into account the effect of external stimulus acting on
neural networks using both analytical and numerical tech-
niques. One of the main lines of works considers the action
of an external field as the network stimulus. Amit, Gutfre-
und, and Sompolinsky [7,8] analyzed the effect of a static
field conjugated to one or several patterns on the thermody-
namic behavior of the Hopfield model. The main result for
the particular case of a single stimulated pattern was an in-
crease of the recognition ability associated with this pattern,
i.e., the network with N neurons acquires the ability to re-
cover the pattern even when the number of memorized pat-
terns p exceeds the limit a=p/N=0.14 typical of the zero
field case. However, they found that, when the stimulus is
over several patterns, there is an increase of internal noise
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and the resulting increase of the recognition ability in insig-
nificant, decaying with the number stimulated patterns. For
example, a stimulus over five or six patterns already gener-
ates enough internal noise to strongly restrict the recognition
ability.

In 1989, Engel et al. [9] proposed the use of external
fields parallel to the initial configuration to study the pattern
recognition ability of the Hopfield model. The correlation
between the external field and the initialization state allowed
one to combine the internal information stored in the syn-
apses with the input stimulus. They compared analytical and
numerical results demonstrating that such external stimulus
also allows for pattern recognition even when the number of
stored patterns exceeds the critical value for the zero field
Hopfield model. The interdependence of the state superposi-
tion, external stimulus and the initial condition was studied,
revealing a first order transition between the disordered and
recognition phases, for values of the initial superposition
above a critical value.

The use of external neural stimulus, parallel to the initial
configuration, was later extended to the diluted Hopfield
model [10]. In this case, a dynamic equation for the time
evolution of the system superposition was obtained as a
function of the parameter that controls the intensity of the
external stimulus. By investigating the basin of attraction of
the stimulated pattern, they found an increased stability of
the memory states and an additional decrease of spurious
states for a narrow range of values for the stimulus intensity.
In this region, they found that recognition could be achieved
even when the initial configuration was outside the zero-field
basin of attraction of the initial pattern. However, when the
number of memorized patterns is large, the stability of the
spurious states increases with the external field and therefore,
such stimulus becomes unable to promote an enhancement of
the network recognition ability in this regime.

Amit, Parisi, and Nicolis [11] also investigated a model in
which an external field coupled to one of the patterns is used
to stimulate the network. They treated analytically this model
within the mean field approximation and compared their re-
sults with numerical simulations. This model differs from the

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.74.046117

SOBRAL, JR. et al.

one studied by Amit, Gutfreund, and Sompolinsky [7] by the
presence of noise in the external field, which is generated by
a predetermined error distribution. They found that the level
of memory upload above which the network stops to act as a
model of associative recognition is determined by the stimu-
lus intensity at the initial state. Further, they identified that,
for any noise distribution and irrespective to the number of
patterns stored, there is a critical field value above which the
network completely corrects the information contained in the
stimulus. More recent studies of hysteresis in driven neural
networks under static [12] and dynamic [13] external fields
revealed a rich behavior with a maximum hysteresis loop
area for a nonzero periodic field intensity.

In the present work, we study the Derrida-Gardner-
Zippelius (DGZ) model [14], which consists of an ultradi-
luted Hopfield neural network, under the action of a stimulus
over one of the stored patterns which is proportional to the
network state superposition with the stimulated memory pat-
tern. We will distinguish two possible cases. In the first one,
the stimulated pattern will be parallel to the pattern strongly
correlated to the initial state. In such case, the convergency
of the system state to the pattern to be recognized will be
favored once the stimulus already brings information about
such pattern. Consequently, the basin of attraction of the
stimulated pattern is expected to be increased and the recog-
nition ability improved. In the second case, we will consider
that the stimulus acts on a stored pattern that is orthogonal to
the pattern strongly correlated with the initial state. In such
case, the initial state influences but not fully determines the
network dynamics. The competition between the basins of
attraction of the stimulated and initial patterns may lead to
distinct final states associated with either basin. We will ob-
tain the dynamical equation for the proposed model analyti-
cally and report the phase diagram of both cases in the pres-
ence of internal an thermal noise. Numerical simulations for
the zero temperature limit will be provided and compared
with the analytical results.

II. ULTRADILUTED NEURAL NETWORK: DGZ MODEL

An important contribution in the Hopfield model was pro-
posed by Derrida, Gardner, and Zippelius (DGZ) in 1987
[14]. They considered the introduction of new biological in-
gredients such as dilution and asymmetry in the synaptic
connections. The motivation of their work was due to the
innumerable biological indications that real neural networks
do not have all their elements hardwired between them-
selves. In this way, each neuron is connected only to a re-
duced number of other neurons (about 10* neurons), that is
very inferior to the total number of elements of the network
(about 10'!" neurons).

In the DGZ model, each neuron is considered as an Ising
spin with two possible states: an up position or a down po-
sition depending on whether the neuron has, or has not, fired
an electrochemical signal. The state of the neurons in the
network is defined by the state vector

S=|S|,S2,...,SN>. (1)

Each neuron is connected to about C other neurons, where
the connectivity degree (C) is very low compared to the
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connectivity in the original Hopfield model (N). The extreme
dilution condition (1 < C<1In N) is taken. The influence that
the ith neuron exerts on the jth neuron is given by the Hebb
rule

p
Jyj=Cy2 &, 2)
u=1

where & are independent random variables assuming values
+1 with the same probability, representing the state of ith
neuron corresponding to the stored pattern with index u (u
=1,2,...,p). C;;’s are random variables chosen according to
the following distribution:

wep=Sac-v+(1-SJacy.  ©

We stress that Cj; is not necessarily symmetrical. The time
evolution of the network is governed by a synchronous sto-
chastic dynamical rule with S;(z+1)==+1 with probability

PrS(r+ 1)] = %[1 +8;(¢ + Dtanh Byhy(1)], (4)

where B,=1/T, measures the inverse of the stochastic noise
level of the network, which differs from the static noise (re-
ferring to the number of stored patterns). However, both tend
to let the network recognition unstable. The %; denotes the
Hopfield post synaptic potential

N
(1) = 2, J,;8,(2). (5)
j=1

An other important parameter in this model is the macro-
scopic overlap between the state of system at a given time ¢
and the stored memories, defined as

N

1
m,(t) = X,E &8i(0). (6)

i=1

Considering the time evolution of the system for the case
where the initial configuration is exactly one of the stored
patterns [i.e., Si(0)=§f‘=1], it is possible to obtain the recur-
rence equation for the overlap between the state of system
and the pattern pu=1 that is exact in the limit of extreme
dilution which is given by [14]

4 {m(t) + Z\'Z}
T

Dz tanh , (7)

m(t+1)=

-0

-2 . .
where Dz= dzf;—w , the storage capacity for the diluted model

is defined as a=p/C and the reduced temperature corre-
sponds to T=T,/C.

The definition a=p/C is according with the usual
Hopfield model, i.e., in the fully connected network having
C=N, the storage capacity becomes a=p/N. In the long time
limit, the system converges to a fixed point. In the case «
=0 one finds T"=1 for the critical temperature above which
the network loses its recognition ability. In the absence of
thermal noise (7=0), the maximal value of the storage ca-
pacity for which the network still presents associative
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memory is aC(T=O)=%T =(.6366. This value is greater than
the one found in the original Hopfield model (a,=0.14). In
the ultradiluted regime, the transition to the nonrecognition
phase occurs continuously, in contrast to of the fully con-
nected Hopfield model, where the transition is of first order.

III. DGZ MODEL WITH STIMULATED PATTERNS

In this section, we introduce and analyze the pattern rec-
ognition ability of an extension of the DGZ model including
the influence of a stimulus that acts on one of the stored
patterns. This task will be employed by including an additive
term to the local field while keeping all other parameters
unchanged. In this form, the local field assumes the form

hi(6) = b (6) + B (1), (8)

where hfl (¢) is the usual local field of the Hopfield model, as
defined in the previous section. Here, we will introduce the
local field representing a stimulus over a given stored pattern
as

1 () = hom (1) €], 9)

where & is the stimulated pattern, m,(f) is the state superpo-
sition (macroscopic overlap) with the stimulated pattern at
time ¢ and h is a parameter to control the amplitude of the
stimulus. By considering the stimulus local field proportional
to the product of the state superposition with the stimulated
pattern, we impose that it will only act when the network
state is correlated to the stimulated pattern.

The above proposed stimulus field acts as a feedback ef-
fect from a specific pattern that is kept imposed during the
retrieval dynamics. In this sense, it is a persistent stimulus. In
order to understand how this effect can be produced in prac-
tice, one shall note that the total local field can be written as

N
hi(t)=> (J,,+ %gfg;)sj(o. (10)
j=1

Therefore, the persistent effect of the stimulus field can be
introduced during the training process by defining an effec-
tive biased Hebb rule for the coupling between neurons i and
j in the form

X h
ﬁ=%2&ﬂ+@wﬁkﬁ. (11)
mFEV

Once the network is trained with the above rule, the bias
towards the pattern v will be kept during the entire retrieval
dynamics. From the biological point of view, biased training
reflects the natural tendency that some unusual (e.g., trau-
matic) experiences may have a stronger influence in the for-
mation of the neuron synapses than the regular daily experi-
ences.

In what follows, we will analyze two distinct cases. First,
we will consider the initialization pattern strongly correlated
to the stimulated pattern while uncorrelated with all others
stored patterns. Secondly, the initialization pattern will be
taken as weakly correlated to the stimulated pattern but
strongly correlated to an orthogonal stored pattern. In the
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first case the stimulus will act favoring the recognition of the
initialization pattern while, in the second case, it will force
the dynamics towards a pattern far from the initialization
one.

A. Stimulus parallel to the initialization pattern

Considering the initial state having a single superposition
with one of the stored patterns, namely, m,(t=0)=m(0)4,,,,
all state superpositions with p # v will remain null according
to the dynamic equations. Under the presence of a stimulus
field acting on the pattern &7, the time evolution of the state
superposition m, in the ultradilution limit can be shown to
obey

o =
m(t+ 1) =f Dz tanh(w), (12)
where the subscript v was omitted for simplicity and &
=hy/C is the reduced amplitude of the stimulus field. The
case h=0 recovers the usual dynamic equation of the DGZ
model. At large times, the system achieves an asymptotic
stationary state with m(t)=m for all .

We first analyze the simple case of a=0 which represents
that a finite number of patterns have been stored by the net-
work. In this case, the asymptotic superposition will be given
by
ﬂﬁﬁ) 13)

m= tanh(
T

Therefore, the stimulus field acts only by rescaling the ther-
mal noise. The critical temperature above which the network
loses its recognition ability will be given now by 7.=h+1,
i.e., the stimulus increases the stability of the network
against thermal noise.

For the case of an infinite number of patterns stored by
the network, while keeping « finite, the stationary state su-
perposition in the absence of thermal noise (7=0) can be
shown to be given by

m(h+1)
m=erf<T), (14)

where erf(x):% I 6e‘”2du is the error function. In Fig. 1 we
show the stationary state superposition as a function of # and
a for T=0 and the initial configuration strongly correlated to
the stimulated pattern. Notice that the stimulus field in-
creases the critical capacity above which the network loses
its recognition ability. For 7=0 the critical capacity is given
by a.==(h+1)%

For the general case of finite temperature and network
capacity, a simple analytic expression for the critical surface
in the space T X X h could not be derived from the station-
ary solution of Eq. (12). In Fig. 2, we report the full phase
diagram as obtained numerically. It clearly shows that the
recognition ability is enhanced by the stimulus field with the
convergence to the desired pattern becoming more stable
against thermal noise and network capacity.
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FIG. 1. (Color online) Stationary state superposition m as a
function of & and a for T=0 when the initial configuration is
strongly correlated to the recognition pattern, which is also the
stimulated one. The stimulus field increases the critical capacity
above which the network loses its recognition ability.

B. Stimulus orthogonal to the initialization pattern

In this section, we consider that the initial state has super-
position with two of the stored patterns, ie., m,(0)
=m,(0)6,, ,+ms0)6, s The initial state will be taken as
strongly correlated to the pattern &, such that m,(0) <1, but
only weakly correlated to the pattern &5 for which ms0)
< 1. Therefore, in the absence of stimulus the network natu-
rally converges to a state close to &, whenever pattern rec-
ognition takes place. When a stimulus is applied to the pat-
tern &, the network dynamics is similar to the one described
in the previous section. Here, we will assume that the net-
work is stimulated to recognize the pattern &5 which is only
weakly correlated to the initialization state. In this case, the
network will be forced towards a pattern that is far from the
one initially presented to it.

FIG. 2. (Color online) Phase diagram in the space of parameters
T X aX h for the stimulus field parallel to the pattern strongly cor-
related to the initialization configuration. Below the critical surface
the network retains a finite superposition. The recognition ability
increases with increasing stimulus field.
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Following the same procedure to deal with the standard
DGZ model in the ultradiluted limit, the basic equations to
analyze the dynamics of the state superposition with the pre-
sented and stimulated patterns can be analytically obtained.
In the present case, one results with a pair of coupled equa-
tions for the superpositions m,(t+1) and mgz+1) given by

(t+1)= +mD tnh(my(t)wLZ\”m)
n, =) Zta - i
(15)
m5(t+1)—f+wD tanh(’"a(f)(fH1)+zvmi(t)+a>
= . .
(16)

Notice that both equations are exact and become identical
in the absence of the stimulus field. We start analyzing the
stationary solution of the above equations for the case of a
finite number of stored patterns (@=0). In what follows, we
will consider m,(0)=0.99 and ms0)=0.01. In Fig. 3 we
show both state superpositions m, and ms in the stationary
asymptotic regime as functions of 7" and 4. We found that for
small values of the stimulus field, there is a discontinuous
transition from a state superposed to the pattern v (m,# 0
and ms=0) to a state superposed to the stimulated pattern
6 (m,=0 and mgs#0). Therefore, the presented pattern re-
mains stable in the presence of a weak stimulus towards a
different pattern.

At T=0 the presented pattern loses its stability for stimu-
lus fields larger than h.=0.279, with the critical field de-
pending on the initial superposition with the stimulated pat-
tern. For stimulus fields slightly above this critical value, a
reentrant behavior was observed. At very low temperatures,
the network is driven towards the stimulated pattern even
when the network initial state is almost orthogonal to it. In
this regime the basin of attraction of the stimulated pattern
surpasses that of the initialization pattern. As the temperature
is increased, these two basins have their range reduced. The
initialization pattern turns out to be the dynamical attractor
on a finite temperature range as these two basins become
nonoverlapping. Further increasing the temperature makes
the initialization pattern unstable and the network is again
driven towards the stimulated pattern. Finally, at higher tem-
peratures, all patterns become unstable and the network loses
its recognition ability. Such reentrant behavior reflects, there-
fore, the competing effects between the recognition dynam-
ics and the stimulus field as well as the different role played
by the noise on each term. It is important to stress that such
reentrant behavior is not directly related to a hysteresis phe-
nomenon. It was previously reported to appear in neural net-
works trained with noisy data whose origin was also related
to competing tendencies in structuring the basins of attrac-
tion for the stored patterns [15]. Reentrant behavior is com-
monly observed in several other physical systems, particu-
larly in spin systems with competing interactions [16,17]. In
the present case, the whole phase with m,# 0 is the region in
the parameter space at which the initial state remains stable
even in the presence of an orthogonal stimulus. It shall be
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FIG. 3. (Color online) State superpositions m, and ms in the
stationary asymptotic regime as functions of 7" and % for the case of
orthogonal stimulus and a finite number of stored patterns (a=0).
The initial superpositions were taken as 71,(0)=0.99 and m40)
=0.01. For low temperatures and stimulus field, the network retains
its ability to recognize the pattern strongly correlated to the initial
state. As the field increases, the stimulated pattern becomes stable
and the network dynamics converges to the vicinity of the stimu-
lated pattern.

kept in mind that the stimulated pattern has its own basin of
attraction and the network will naturally converge to a mg
#0 phase if the initialization state is chosen close to the
stimulated pattern.

The particular case of 7=0 and an infinite number of
stored patterns has a behavior closely related to the previous
one, once the stored capacity introduces noise to the network
in some sense similar to the thermal noise. The superposi-
tions can be written in this case as

_ m, (1)
mt+1) _erf( V2mg()*(1 +h)2+2a>’ (17)
~ ms(t)(h+1)
ms(t + 1)—erf<—\’m). (18)
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FIG. 4. (Color online) The T=0 superpositions m,, and ms as
functions of a and A for the case of orthogonal stimulus. The initial
superpositions were taken to be m,(0)=0.99 and m50)=0.01. The
storage capacity « has a role similar to the thermal noise.

The T=0 asymptotically stationary superpositions m, and m
as functions of a and & are shown in Fig. 4. Notice again that
the initialization pattern v can only be recognized by the
neural network for small values of the stimulus field. The
phase diagram in the a X h plane for 7=0 is shown in Fig. 5.
The line separating the stable phase with ms=0 and the non-
recognition phase is the same as the critical line for parallel
stimulus. The dashed line represents the first-order transition
between the phases with the stable state being the presented
or the stimulated pattern. Here, the reentrant behavior is
clearly depicted for stimulus fields slightly above the critical
value h.=0.279. The region of stability for the recognition
of the presented pattern v increases as the initial superposi-
tion with the stimulated state decreases. In the asymptotic
limit of ms0)—0 it extends over the whole region of «
<2/

For stimulus fields slightly above the first-order transition,
the convergence towards the stationary state becomes slower
due to the proximity of the frontier between the two basins of
attraction. We have investigated the scaling behavior of this
transient time by following the time evolution of the state
superposition m,(f), as shown in Fig. 6. We have considered
the representative case of a=0.25 at which the first order
transition occurs at i°=0.334. The state superposition 1,
stays in a quasistationary state during the initial transient
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FIG. 5. (Color online) The T=0 phase diagram for the case of
orthogonal stimulus with m,(0)=0.99 and m50)=0.01. The dashed
line represents the discontinuous transition between the phase with
m,# 0 and the phase with ms# 0. The reentrant behavior reflects
the competing effects of the network dynamics and the stimulus
field.

before the final crossover to the true stationary state with
m,=0. The duration of the initial transient diverges as one
approaches the transition point. In the inset of Fig. 6 we
depict the scaling behavior of the transient time. It exhibits a
power-law scaling on the form 7o (h—h")=0-80,

We further computed the state superpositions as functions
of T and « for a small value of the stimulus field £=0.2 (see
Fig. 7). The discontinuous transition from the state with m,,
#0 to the state with mz# 0 is followed by the continuous
transition for the nonrecognition state. For very week fields
(not shown) the initialization pattern is the one predomi-
nantly recognized, with the stimulated state being stable only
on a short range of parameters. On the other hand, for large
fields only the stimulated state can be recognized.

1 T T N T T T

oy - - h=0.35
L — h=0.34

08 ! | — h=0.337 1
| \
) | 4

1 ;
06 | 0 ]
2 L
= | | 3

o4 =10+ 1
(
| \
! \
(

02 | o+ | 107 bs : :
b 107 107
L h-h

O ! ll L L L

0 500 1000 1500 2000 2500
Time (1)

FIG. 6. Time evolution of the state superposition with the ini-
tialization pattern m,(¢) at the vicinity of the first-order transition.
The particular case of a=0.25 for which 4*=0.334 is shown. For
fields slightly above A", the system stays in a quasistationary state
during a transient time before crossing over to the final stationary
state. The inset exhibits the scaling behavior of the transient time
which obeys 7o (h—h*)~080,
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FIG. 7. (Color online) State superpositions as functions of 7' and
« for an orthogonal stimulus field 2=0.2. At low values of T and «,
the network still recognizes the pattern strongly correlated to the
initial configuration. Before the regime of no recognition, the net-
work exhibits a phase that converges to the vicinity of the stimu-
lated memory.

C. Numerical simulations at 7=0

Numerical simulations have contributed to a deeper un-
derstanding of the behavior of dynamical models, besides
being a fundamental tool to test analytical predictions based
on approximated techniques. In the present section we com-
pare the mean field analytical predictions obtained in the
extreme dilution limit with numerical simulations performed
at T=0. Due to the practical impossibility of achieving the
limit of extreme dilution C<<In N for finite lattices and C
> 1, we consider a less restrictive condition of C<<N. Previ-
ous simulations have demonstrated that even with such less
restrictive condition, the numerical results depict a good
agreement with the extreme dilution mean-field results
[18-20].

In order to employ the dynamic evolution of the local
variables, the local field can be written in terms of the state
superposition and the stored patterns. For the particular case
in which the stimulus field acts over the pattern that is solely
correlated to the initialization state, the dynamic equation
reads
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FIG. 8. State superposition m as a function of & for 7=0 and
parallel stimulus field 2=0.2. Symbols corresponds to the numerical
simulation results. The solid line is the analytic mean field predic-
tion in the limit of extreme dilution. The agreement is remarkable
considering that the extreme dilution condition is far from being
fulfilled in the numerical simulation. N and C are explained in the
text

N p
S+ D=sen €O+ D+ =3 S Cees |

Jj=1 u#v

(19)

On the other hand, when the stimulus field acts in one out of
two patterns correlated to the initialization state, the dynamic
equation assumes the form

Sit+1)=sgn| &m, (1) + EOmst)(h+1)

N p
LSS e |. (0)
Cict p#v.s

The above equations are valid in the absence of thermal
noise. In our numerical simulations we computed the average
superposition of the system state with the patterns v and 6
after reaching the stationary state. We averaged over 50 dis-
tinct realizations of the neural network, each one containing
a new set of uncorrelated stored patterns and connectivity
distribution. We used a parallel processing in networks with
N=10 000, 20 000, and 40 000 neurons and the average con-
nectivity C=80. In all samples, we started with an initial
configuration with superpositions m,(0)=0.99 and ms0)
=0.01 for orthogonal stimulus and m,(0)=1 for parallel
stimulus to be able to directly compare the numerical results
with the analytical ones.

In Fig. 8, we present our numerical results for the case of
parallel stimulus. We obtained an excellent agreement with
the analytical prediction except at the vicinity of the transi-
tion point where finite-size effects round off the numerical
data. This is a striking agreement once the extreme dilution
condition is not fulfilled even for the largest network size
considered. In Fig. 9 we depict our numerical data for the
case of a stimulus field applied over a pattern that is orthogo-
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FIG. 9. State superpositions m, and ms as functions of a for
T=0 and orthogonal stimulus field ~=0.2. We considered m,(0)
=0.99 and m0)=0.01. The numerical data corroborates the mean
field results exhibiting also a first-order transition m, — m s followed
by a continuous transition for a phase with no recognition ability.
The simulation data are rounded off at the vicinity of the transition
points due to finite-size corrections. N and C are explained in the
text

nal to the one strongly correlated to the initial state. We used
h=0.2 for which the initialization pattern is stable for small
capacities « (see Fig. 5). Our simulation results corroborate
the analytical calculations in the limit of extreme dilution. A
first order transition separates the phase with stable initial-
ization pattern from that of stable stimulated pattern. As the
capacity « is increased a continuous transition to a phase of
no recognition ability takes place, equivalent to the one ob-
tained for parallel stimulus.

IV. SUMMARY AND CONCLUSIONS

In summary, we studied the effects of a stimulus field on
the recognition ability of neural networks. We took the basic
Hopfield model in the ultradiluted regime to represent a net-
work able to recognize patterns by associative memory. Fol-
lowing the procedure introduced by Derrida, Gardner, and
Zippelius [14] we provided exact recurrence relations for the
network state superposition. The stimulus field was intro-
duced as an extra effective local field proportional to the
state superposition with a particular stored pattern. One
should note that the stimulus field enhances the recognition
ability whenever it acts as a bias towards a pattern strongly
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correlated to the initial network configuration. In the limit of
extreme dilution, we obtained analytical expressions for the
state superposition and the phase diagram which were con-
sistent with numerical simulations of finite networks. On the
other hand, a stimulus field towards a pattern orthogonal to
the one strongly correlated to the initial network configura-
tion reduces the recognition ability of the initialization pat-
tern. Actually strong stimulus fields can drive the network to
recognize the stimulated pattern even for a slight superposi-
tion of the initialization configuration with the stimulated
memory. We found a first-order transition between the phase
with stable initial state and the phase with stable stimulated
pattern, whose phase diagram presents a reentrant behavior
due to the competition between the stimulus field and the
recognition dynamics. Numerical simulations at 7=0 have
reproduced such first-order transition. As the simulations
were performed in a diluted lattice far from the ultradiluted
regime, we believe that the here reported analytical results
shall remain valid for a much larger range of dilutions. It is

PHYSICAL REVIEW E 74, 046117 (2006)

important to point out that the presently introduced stimulus
field does not act directly by broken network symmetry, i.e.,
its presence does not induce a finite state superposition (or-
der parameter) in the regime of high temperatures and stor-
age capacities. The network can still recognize a pattern
strongly correlated to the one presented in the initial state
even in the presence of a small bias towards an orthogonal
configuration. This feature is also likely to occur in biologi-
cal neural networks. We believe the present proposal repre-
sents one of the simplest ways to introduce this phenomenon
in neural network modeling.
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